Chemical elements
    Physical Properties
    Chemical Properties
      Silicon Tetrahydride
      Silicon Tetrafluoride
      Hydrofluosilicic Acid
      Silicon Subfluoride
      Silicon Tetrachloride
      Silicon Tetrabromide
      Silicon Tetra-iodide
      Mixed Halides of Silicon
      Halogen Derivatives of Silico-ethane
      Halogen Derivatives of Silicopropane
      Halogen Derivatives of Silicobutane
      Halogen Derivatives of Silicopentane and Silicohexane
      Silicon Oxychlorides
      Silicon Dioxide
      Silicoformic Anhydride
      Silico-oxalic Acid
      Silicomes-oxalic Acid
      Silicon Disulphide
      Silicon Monosulphide
      Silicon Oxysulphide
      Silicon Thiochloride
      Silicon Thiobromide
      Silicon Chloroitydrosulphide
      Silicon Selenide
      Silicon Tetramide
      Silicon Di-imide
      Silicon Nitrimide
      Siliconitrogen Hydride
      Silicon Nitrides
      Crystalline Silicon Monocarbide
      Silicon Dicarbide
      Silicon Carboxide
      Borides of Silicon
    PDB 1fuq-4ehr

Silico-iodoform, SiHI3

Silico-iodoform was prepared by Buff and Wohler by the action of hydrogen iodide gas on heated silicon, and the method was improved upon by Friedel, who mixed hydrogen with the hydrogen iodide. Ruff has found that when silicochloroform reacts with ammonia at -15° C. siliconitrogen hydride, SiHN, is formed; and when this is suspended in carbon disulphide and treated with hydrogen iodide at low temperature, silico-iodoform is produced according to the reaction:

SiHN + 4HI = SiHI3 + NH4I.

The ammonium iodide is filtered off and the silico-iodoform freed from the solvent, carbon disulphide, and from silicon tetra-iodide by distillation. An even better result is obtained by employing aniline instead of ammonia. Silicon hydrotrianilide is formed, which reacts with hydrogen iodide thus:

SiH(NHC6H5)3 + 6HI = SiHI3 + 3C6H5NH2.HI.

Silico-iodoform is a colourless liquid having a density of 3.286 at 23° C. or 3.314 at 20° C. and 3.362 at 0° C., which solidifies at +8° C. and distils under reduced pressure as follows:

Pressure mm.Temperature ° C.

At about 150° C. it begins to decompose, but on further heating some of it can be distilled, and condensed at about 220° C. under atmospheric pressure. Silico-iodoform vapour burns in the air, and the liquid is decomposed by water like the chlorine compound, yielding silicoformic anhydride and hydriodic acid.

© Copyright 2008-2012 by